深夜爽爽动态图无遮无挡,日本激情一区二区三区,波多野结衣三级在线播放,国产精品剧情对白无套在线观看,国产精品久久777,国产h在线播放,麻豆tv在线观看入口,91色在线
Welcome,Flow Switches,Shanghai ZanKe Automation Technology Co., Ltd Hotline:18001874240
Language: Chinese∷  English

Home> English Website common problem

How to Determine the Accuracy Class of Instruments and Meters (With Examples)

Time: 2025-09-08 01:09:51 Click:0

How to Determine the Accuracy Class of Instruments and Meters (With Examples)


The accuracy class of an instrument is a core indicator of its measurement precision. The determination process should consider national standards, error calculations, and practical application scenarios. Below is a systematic approach to evaluating accuracy classes:


I. Definition and Standards of Accuracy Class


Basic Concept?

The accuracy class represents the maximum allowable ?relative error? (percentage of absolute error to full-scale value). The smaller the number, the higher the precision. For example:


Class 0.5 instrument: Maximum allowable error of ±0.5% of full scale.

Class 1.0 instrument: Allowable error of ±1.0%, which is less precise than Class 0.5.


National Standard Classes?

Common industrial instrument classes in China include 0.1, 0.2, 0.5, 1.0, 1.5, 2.5, and 4.0. Some specialized instruments can reach Class 0.005.

Note: Non-recommended classes (e.g., 0.25, 0.3) are marked in parentheses.


II. Methods for Determining Accuracy Class


Reference Error Method?


Calculate the maximum reference error:

Reference Error

=

(

Maximum Absolute Error

Full Scale

)

×

100

%

Reference Error=(

Full Scale

Maximum Absolute Error


)×100%

Round the result to the nearest standard class (e.g., 1.2% error corresponds to Class 1.5).


Verification by Calibration Standards?


Follow national standards (e.g., ?GB/T 13283-2008?) to verify if the instrument's error meets the maximum allowable error for its claimed class.

Example: A spring-type precision pressure gauge must have ≤±0.05% error to qualify as Class 0.05.


Multi-Range/Multi-Parameter Instruments?


For instruments with multiple ranges or parameters, evaluate each range/parameter separately.

III. Practical Considerations


Relationship Between Accuracy and Range?


The same absolute error results in a smaller relative error for larger ranges (e.g., 0.5A error is 10% of 5A but only 1% of 50A).


Calibration and Maintenance?


High-precision instruments (e.g., Class 0.1) require more frequent calibration (e.g., annually for electronic blood pressure monitors).

Harsh environments (e.g., toxic gas exposure) may require shorter calibration intervals.


Selection Guidelines?


Industrial settings typically use Class 1.0–2.5, while laboratories require Class 0.1–0.5.

Avoid over-specifying precision, which increases costs unnecessarily.

IV. Common Misconceptions


Accuracy ≠ Precision?


Precision refers to repeatability, while accuracy reflects closeness to the true value.


Error Labeling Variations?


Some digital instruments label errors as "±X" or "X% of reading" (check the manual for interpretation).

Example Applications

Example 1: Temperature Gauge?


Scenario?: A thermometer with a range of 200–700°C shows a maximum absolute error of +4°C.

Calculation?:


Full scale?: 700°C - 200°C = 500°C

Reference error?:

(

4

500

)

×

100

%

=

0.8

%

(

500

4


)×100%=0.8%

Class determination?: 0.8% falls between Class 0.5 (±0.5%) and Class 1.0 (±1.0%). By rounding up, the class is ?1.0?.

Example 2: Pressure Gauge?


Scenario?: A pressure gauge (0–1.6 MPa) has a basic error of ±0.016 MPa.

Calculation?:


Reference error?:

(

0.016

1.6

)

×

100

%

=

1.0

%

(

1.6

0.016


)×100%=1.0%

Class determination?: ?1.0?.

Example 3: Multi-Range Flowmeter?


Scenario?: A flowmeter has:


0–100 m3/h range: ±0.5 m3/h error

0–50 m3/h range: ±0.3 m3/h error

Calculation?:

Reference errors?:

Large range: 0.5/100×100% = 0.5% → ?Class 0.5?

Small range: 0.3/50×100% = 0.6% → ?Class 1.0?

Final class?: The stricter requirement (?Class 0.5?) applies.

Key Notes


Error Calculation Rules?:


Use the larger absolute error (positive or negative).

Non-standard classes (e.g., 0.3) are discouraged.


Range Impact?:


Smaller ranges yield higher apparent accuracy for the same absolute error.


Calibration Frequency?:


High-precision instruments (e.g., Class 0.1) need more frequent calibration.


This systematic approach ensures compliance with national standards (e.g., ?GB/T 13283-2008?) and practical accuracy requirements.


主站蜘蛛池模板: 宜川县| 伊金霍洛旗| 江口县| 威海市| 剑河县| 长顺县| 安义县| 嵊泗县| 策勒县| 图木舒克市| 启东市| 广宗县| 芒康县| 衢州市| 共和县| 三门县| 襄城县| 正镶白旗| 湛江市| 旬阳县| 灌南县| 确山县| 合阳县| 宣化县| 绍兴市| 华容县| 嘉黎县| 错那县| 游戏| 保定市| 上犹县| 临海市| 策勒县| 诏安县| 衢州市| 昂仁县| 三河市| 岱山县| 栾川县| 浙江省| 宽城| 南皮县| 肃宁县| 武安市| 百色市| 藁城市| 孟津县| 海城市| 揭阳市| 宝坻区| 贞丰县| 安泽县| 元谋县| 报价| 呼伦贝尔市| 海兴县| 旬邑县| 泰宁县| 嫩江县| 高州市| 图们市| 吉首市| 湾仔区| 大冶市| 新源县| 永兴县| 吴旗县| 泽库县| 杭锦旗| 柘荣县| 香格里拉县| 大庆市| 囊谦县| 沂南县| 南昌县| 南丰县| 淮滨县| 锦屏县| 常宁市| 宣威市| 广河县| 灵石县|